
Chapter-VIII 
INTRODUCTION TO MULTIVARIATE ANALYSIS  

 

 Multivariate statistical analysis is appropriate whenever several responses are 

measured on each object or experimental unit. Univariate analysis applied separately to 

each response leads to incorrect conclusions, since responses measured on the same 

object are generally correlated. Multivariate analysis can be simply defined as the 

application of statistical methods that deal with reasonably large number of 

characteristics or variables recorded on each object in one or more samples 

simultaneously. It provides statistical tools for the study of joint relationships of variables 

in data that contains intercorrelations. In other words, multivariate analysis differs from 

univariate and bivariate analysis in that it directs attention away from the analysis of the 

mean and variance of a single variable or from the pairwise relationship between two 

variables, to the analysis of the co-variances or correlations which reflect the extent of 

relationship among three or more variables. For example, a biometrician concerned with 

developing a taxonomy for classifying species of fowl on the basis of anatomical 

measurements may collect information on skull length, skull width, humerus length and 

tibia length. 

Remarks: 

1. The term objects in multivariate analysis refer to things, persons, individuals, 

events or in general entities on which the measurements are recorded. And the 

measurements relate to characteristics or attributes of the objects that are being 

recorded and in general are called variables. 

2. Multivariate analysis investigates the dependency not only amongst the variables 

but also among the individuals on which observations are made. 

8.1 Data Cube and Data Matrices: 

 In multivariate analysis, a researcher generally deals with data collected from ‘n’ 

individuals, on ‘p’ characters recorded over ‘L’ locations or periods or groups. Thus, the 

basic input can be considered in terms of a data cube denoted by xijk, where 

 i = 1, 2, ….., n refers to objects 

 j = 1, 2, ….., p refers to characteristics/variables or attributes 
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 k =1, 2, ….., L refers to location/periods 

 The data cube can be given a two dimensional representation by writing matrices 

within matrices as follows: 

  Characteristics 
Location/Period Objects X1 X2 ….. Xp 

I O1 x111 x121 ….. x1p1 
 O2 x211 x321 ….. x2p1 
 : 

: 
    

 On xn11 xn21 ….. xnp1 
II O1 x112 x122 ….. x1p2 
 O2 x212 x222 ….. x2p2 
 :     
 On xn12 xn22 ….. xnp2 
 ….. ….. ….. ….. ….. 

Lth O1 x11L x12L ….. x1pL 
 O2 x21L x22L ….. x2pL 
 : : :  : 
 On xn1L xn2L ….. xnpL 

 In many applications, the analyst considers only two coordinates of the data cube, 

so that the basic input becomes a data matrix or rectangular array of numerical entities. 

This may result from collecting information only on one occasion/location or groups. In 

such situations, the data matrix has ‘n’ rows and ‘p’ columns and can be described in 

terms of the elements xij, where i refers to objects and j refers to attributes. 

 A data matrix as ‘n’ individuals recorded for ‘p’ characters/variable can be 

described as: 

Objects X1 X2 … Xp 
1 x11 x12 … x1p 
2 x21 x22 … x2p 
: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

n  xn1 xn2 … xnp 
or simply  
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8.2 Descriptive Measures in Multivariate Analysis: 

 Let X be a random vector of p-components and denoted by: 
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 The mean vector (µ) covariance matrix (Σ) and correlation matrix )(ρ are given 

by: 
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where µi = E (Xi), σi
2 = V (Xi), σij = Cov (Xi, Xj) and ρ ij = corr (Xi, Xj) = 

)(x  v)(x v

) x,(x Cov

ji

ji  

 The mean vector (μ ), covariance matrix (Σ) and the correlation matrix ( ρ ) given 

above respectively represent the measures of central tendency, dispersion and linear 

association for the p-dimensional multivariate population. The sample estimates for these 

measures may be obtained as follows: 

 Let x denote an n x p data matrix, where n is the number of observations and p is 

the number of variables. Then sample mean vector denoted by x is given by:  
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 where Xd = X - 1 X′  is the matrix 

of mean corrected scores and the matrix dd  xx′  is often called the corrected sum of 

squares and product matrix. 

 The sample correlation matrix is usually denoted by 
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be obtained by R = D′SD where D denote the diagonal matrix whose entries along the 

main diagonal are the reciprocals of the standard deviation of the variables in x, i.e. 
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Example-1: Suppose the data matrix x = 
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 be a multivariate sample of size n=4 

from a trivariate population. 

 Then sample mean vector: 
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 Now the mean corrected score matrix xd is computed as: 

 Xd = X – 1 X′ = 5]    4   [3   
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Important Multivariate Methods: 

 Multivariate data recorded on a large number of interrelated variables is often 

difficult to interpret. Therefore, there is a need to condense and sum up the essential 

features of the data through dimension reduction or some appropriate summary statistics 

for better interpretation. As a broad classification, the multivariate techniques may be 

classified as dependence methods and interdependence methods. 

 The methods in which one or more variables are dependent and others are 

independent are called dependant techniques. Multivariate regression, multivariate 

analysis of variance, discriminant analysis and canonical correlation analysis are the 

notable dependence techniques.   

 If interest centres on the mutual association across all the variables with no 

distinction made among the variable types, then such techniques are called 

interdependence techniques. Principal component analysis, factor analysis, cluster 

analysis and multi-dimensional scaling are the important interdependence techniques. 

Multivariate Regression: It is concerned with the study of the dependence of one or 

more variables on a set of other variables called independent variables with the objective 

to estimate or predict the mean values of the dependent variables on the basis of the 

known values of the independent variables. If there is only one dependent variable and 

many independent variables, then it is known as multiple regression. 

Multivariate Analysis of Variance: It is simply a generalization of univariate analysis 

of variance, where the primary objective is on testing for significant differences on a set 

of variables due to changes in one or more of the controlled (experimental) variables. 

Discriminant Analysis: It is used to find linear combinations of the variables that 

separate the groups. Given a vector of p observed scores, known to belong to one of two 

or more groups, the basic problem is to find some function of the p scores (i.e. a linear 

combination) which can accurately assign individual with a given score into one of the 

groups. 

Principal Component Analysis: It is a dimension reduction technique where the 

primary goal is to construct orthogonal linear combinations of the original variables that 

account for as much of the total variation as possible. The successive linear combinations 
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are extracted in such a way that they are uncorrelated with each other and account for 

successively smaller amounts of total variation. 

Cluster Analysis: The purpose of cluster analysis is to reduce a large data set to 

meaningful subgroups of individuals or objects. The division is accomplished on the 

basis of similarity of the objects across a set of specified characteristics. The individuals 

of a particular subgroup or cluster are, in some sense, more similar to each other than to 

elements belonging to other groups. 

Canonical Correlation Analysis: The most flexible of the multivariate technique, 

canonical correlation simultaneously correlates several explanatory variables and several 

dependent variables. In usual sense, it determines the linear association between a set of 

dependent variables and a set of explanatory variables. In canonical analysis, we find two 

linear combinations, one for the predictor set of variables and one for the set of 

explanatory variables, such that their product moment correlation is maximum.  

8.4 Testing Significance of Mean Vector (One Sample Case): This is useful for 

multivariate populations where it is required to test whether the population mean vector 

(µ) is equal to a specified mean vector (µ0). 

 Let x1, x2, ….., xn be a random sample of size n from a p-dimensional multivariate 

population having mean vector µ and covariance matrix Σ, 

 H0: µ = µ0 

 H1: µ ≠ µ0 

 If covariance matrix Σ is known or sample is large then a χ2 test is used to test the 

above hypothesis. If X denotes the sample mean vector then the statistic 

( ) ( )0
1

0 μXμX −
′

−= ∑ −n2χ follows a chi-square distribution with p degrees of freedom 

and we reject H0 if (p)22
cal χχ > at desired α level of significance. 

 If the covariance matrix Σ is not known and sample size is small, then Hotelling 

T2 (defined below) is used for testing H0. 

 ( ) ( )0
1

0 μXμX −
′

−= −SnT2 , where S is the sample covariance matrix. The 

sampling distribution of Hotelling T2 is given as: 
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8.5 Testing Equality of Two Mean Vectors (Two sample case): Consider two 

independent samples of sizes n1 and n2 from two p-variate normal populations with mean 

vectors µ1 and µ2 and having same but known covariance matrix Σ.  

 H0: µ1 = µ2 

 H1: µ1 ≠ µ2 

 Test statistic is: 
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Example-2: Mean vector and covariance matrix for a sample of size 20 from a trivariate 

population are found to be: 
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 Since T2
cal is less than 10.7, we do not reject H0. 

Example-3: Consider the two samples of size n1 = 45 and n2 = 55 with 
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 Since T2
cal > 6.26, therefore, we reject H0. 

Note: 

1. Mahalanobis D2 defined below can also be used for testing the above hypothesis: 
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2. If the two populations do not have same covariance matrices, then above test 

cannot be used. However, for large samples or when dispersion matrices are 

known, χ2 test can be used.  
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